C#中如何一次捕获多个异常?

不鼓励简单地捕获System.Exception。 相反,应该只捕获“已知”异常。

现在,这有时会导致不必要的重复代码,例如:

try
{
    WebId = new Guid(queryString["web"]);
}
catch (FormatException)
{
    WebId = Guid.Empty;
}
catch (OverflowException)
{
    WebId = Guid.Empty;
}

我想知道:有没有办法捕获两个异常并且只调用一次 WebId = Guid.Empty 调用?

给定的示例相当简单,因为它只是一个GUID. 但是想象一下你多次修改一个对象的代码,如果其中一个操作按预期失败,你想“重置”object。 但是,如果有意外的异常,我还是想把那个扔得更高。

EDIT: I do concur with others who are saying that, as of C# 6.0, exception filters are now a perfectly fine way to go: catch (Exception ex) when (ex is ... || ex is ... )

Except that I still kind of hate the one-long-line layout and would personally lay the code out like the following. I think this is as functional as it is aesthetic, since I believe it improves comprehension. Some may disagree:

catch (Exception ex) when (
    ex is ...
    || ex is ...
    || ex is ...
)

ORIGINAL:

I know I'm a little late to the party here, but holy smoke...

Cutting straight to the chase, this kind of duplicates an earlier answer, but if you really want to perform a common action for several exception types and keep the whole thing neat and tidy within the scope of the one method, why not just use a lambda/closure/inline function to do something like the following? I mean, chances are pretty good that you'll end up realizing that you just want to make that closure a separate method that you can utilize all over the place. But then it will be super easy to do that without actually changing the rest of the code structurally. Right?

private void TestMethod ()
{
    Action<Exception> errorHandler = ( ex ) => {
        // write to a log, whatever...
    };
try
{
    // try some stuff
}
catch ( FormatException  ex ) { errorHandler ( ex ); }
catch ( OverflowException ex ) { errorHandler ( ex ); }
catch ( ArgumentNullException ex ) { errorHandler ( ex ); }

}

I can't help but wonder (warning: a little irony/sarcasm ahead) why on earth go to all this effort to basically just replace the following:

try
{
    // try some stuff
}
catch( FormatException ex ){}
catch( OverflowException ex ){}
catch( ArgumentNullException ex ){}

...with some crazy variation of this next code smell, I mean example, only to pretend that you're saving a few keystrokes.

// sorta sucks, let's be honest...
try
{
    // try some stuff
}
catch( Exception ex )
{
    if (ex is FormatException ||
        ex is OverflowException ||
        ex is ArgumentNullException)
    {
        // write to a log, whatever...
        return;
    }
    throw;
}

Because it certainly isn't automatically more readable.

Granted, I left the three identical instances of /* write to a log, whatever... */ return; out of the first example.

But that's sort of my point. Y'all have heard of functions/methods, right? Seriously. Write a common ErrorHandler function and, like, call it from each catch block.

If you ask me, the second example (with the if and is keywords) is both significantly less readable, and simultaneously significantly more error-prone during the maintenance phase of your project.

The maintenance phase, for anyone who might be relatively new to programming, is going to compose 98.7% or more of the overall lifetime of your project, and the poor schmuck doing the maintenance is almost certainly going to be someone other than you. And there is a very good chance they will spend 50% of their time on the job cursing your name.

And of course FxCop barks at you and so you have to also add an attribute to your code that has precisely zip to do with the running program, and is only there to tell FxCop to ignore an issue that in 99.9% of cases it is totally correct in flagging. And, sorry, I might be mistaken, but doesn't that "ignore" attribute end up actually compiled into your app?

Would putting the entire if test on one line make it more readable? I don't think so. I mean, I did have another programmer vehemently argue once long ago that putting more code on one line would make it "run faster." But of course he was stark raving nuts. Trying to explain to him (with a straight face--which was challenging) how the interpreter or compiler would break that long line apart into discrete one-instruction-per-line statements--essentially identical to the result if he had gone ahead and just made the code readable instead of trying to out-clever the compiler--had no effect on him whatsoever. But I digress.

How much less readable does this get when you add three more exception types, a month or two from now? (Answer: it gets a lot less readable).

One of the major points, really, is that most of the point of formatting the textual source code that we're all looking at every day is to make it really, really obvious to other human beings what is actually happening when the code runs. Because the compiler turns the source code into something totally different and couldn't care less about your code formatting style. So all-on-one-line totally sucks, too.

Just saying...

// super sucks...
catch( Exception ex )
{
    if ( ex is FormatException || ex is OverflowException || ex is ArgumentNullException )
    {
        // write to a log, whatever...
        return;
    }
    throw;
}

As others have pointed out, you can have an if statement inside your catch block to determine what is going on. C#6 supports Exception Filters, so the following will work:

try { … }
catch (Exception e) when (MyFilter(e))
{
    …
}

The MyFilter method could then look something like this:

private bool MyFilter(Exception e)
{
  return e is ArgumentNullException || e is FormatException;
}

Alternatively, this can be all done inline (the right hand side of the when statement just has to be a boolean expression).

try { … }
catch (Exception e) when (e is ArgumentNullException || e is FormatException)
{
    …
}

This is different from using an if statement from within the catch block, using exception filters will not unwind the stack.

You can download Visual Studio 2015 to check this out.

If you want to continue using Visual Studio 2013, you can install the following nuget package:

Install-Package Microsoft.Net.Compilers

At time of writing, this will include support for C# 6.

Referencing this package will cause the project to be built using the specific version of the C# and Visual Basic compilers contained in the package, as opposed to any system installed version.

For the sake of completeness, since .NET 4.0 the code can rewritten as:

Guid.TryParse(queryString["web"], out WebId);

TryParse never throws exceptions and returns false if format is wrong, setting WebId to Guid.Empty.


Since C# 7 you can avoid introducing a variable on a separate line:

Guid.TryParse(queryString["web"], out Guid webId);

You can also create methods for parsing returning tuples, which aren't available in .NET Framework yet as of version 4.6:

(bool success, Guid result) TryParseGuid(string input) =>
    (Guid.TryParse(input, out Guid result), result);

And use them like this:

WebId = TryParseGuid(queryString["web"]).result;
// or
var tuple = TryParseGuid(queryString["web"]);
WebId = tuple.success ? tuple.result : DefaultWebId;

Next useless update to this useless answer comes when deconstruction of out-parameters is implemented in C# 12. :)

The accepted answer seems acceptable, except that CodeAnalysis/FxCop will complain about the fact that it's catching a general exception type.

Also, it seems the "is" operator might degrade performance slightly.

CA1800: Do not cast unnecessarily says to "consider testing the result of the 'as' operator instead", but if you do that, you'll be writing more code than if you catch each exception separately.

Anyhow, here's what I would do:

bool exThrown = false;

try
{
// Something
}
catch (FormatException) {
exThrown = true;
}
catch (OverflowException) {
exThrown = true;
}

if (exThrown)
{
// Something else
}

</div>

How about

try
{
    WebId = Guid.Empty;
    WebId = new Guid(queryString["web"]);
}
catch (FormatException)
{
}
catch (OverflowException)
{
}
</div>

Cautioned and Warned: Yet another kind, functional style.

What is in the link doesn't answer your question directly, but it's trivial to extend it to look like:

static void Main() 
{ 
    Action body = () => { ...your code... };
body.Catch&lt;InvalidOperationException&gt;() 
    .Catch&lt;BadCodeException&gt;() 
    .Catch&lt;AnotherException&gt;(ex =&gt; { ...handler... })(); 

}

(Basically provide another empty Catch overload which returns itself)

The bigger question to this is why. I do not think the cost outweighs the gain here :)